Regional multifocus image fusion using sparse representation.
نویسندگان
چکیده
Due to the nature of involved optics, the depth of field in imaging systems is usually constricted in the field of view. As a result, we get the image with only parts of the scene in focus. To extend the depth of field, fusing the images at different focus levels is a promising approach. This paper proposes a novel multifocus image fusion approach based on clarity enhanced image segmentation and regional sparse representation. On the one hand, using clarity enhanced image that contains both intensity and clarity information, the proposed method decreases the risk of partitioning the in-focus and out-of-focus pixels in the same region. On the other hand, due to the regional selection of sparse coefficients, the proposed method strengthens its robustness to the distortions and misplacement usually resulting from pixel based coefficients selection. In short, the proposed method combines the merits of regional image fusion and sparse representation based image fusion. The experimental results demonstrate that the proposed method outperforms six recently proposed multifocus image fusion methods.
منابع مشابه
Multifocus Image Fusion Using Sparse Representation by Adaptive Feature Matching
Optical imaging cameras suffer from the problem of limited depth-of-field of optical lenses, so it is difficult to get an image with all objects in focus. One way to overcome this problem is by using multi-focus image fusion technique, in which several images with different focus points are combined to form a single image with all objects fully focused. So, it is crucial to effectively extract ...
متن کاملFusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation
Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...
متن کاملModeling the potential of Sand and Dust Storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)
Due to the differences between the visible and thermal infrared images, the combination of these two types of images leads to better understanding of the characteristics of targets and the environment. Thermal infrared images are really in distinguishing targets from the background based on the radiation differences and land surface temperature (LST) calculation. However, their spatial resolu...
متن کاملMulti-resolution Representation of Multifocus Image Fusion Using Gaussian and Laplacian Pyramids
Image Processing is the integral part of the surveillance system. Multifocus image fusion is a technique used to fuse multiple images captured with multiple focal lengths. In this paper we have studied the multi-resolution pyramid method used to integrate the multiple multifocus images together. This method is based on the down sampling and up sampling of the images and to apply various operati...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 21 4 شماره
صفحات -
تاریخ انتشار 2013